Skip to main content

Featured post

A* ALGORITHM BASICS FOR PATH FINDING & HEURISTICS METHODS : ARTIFICIAL INTELLIGENCE

 A* ALGORITHM BASICS FOR PATH FINDING A* , widely used  known form of best-first search & path planning algorithm nowadays in mobile robots,games. this is the function for A*,                                     f(n) = g(n) + h(n) g ( n ) is the cost of the path from the start node to n , and h ( n ) is a heuristic function that estimates the cost of the cheapest path from n to the goal This will find cheapest f(n) value in neighbor nodes to archive goal node. check below image  A to B path finding with g(n),h(n),f(n) value In the final level check below image Now we will check the Algorithm // A* Search Algorithm 1. Initialize the open list 2. Initialize the closed list put the starting node on the open list (you can leave its f at zero) 3. while the open list is not empty a) find the node with the least f on the open list, call it "q" b) pop q off the open list c) generate q's 8 successors

Ros Topics : Ros Tutorial


Topics , Its look like pipe line connection between two or more nodes,This is the way to transfer data continuously within two nodes.

 Each message in ROS is transported using named buses called topics. When a node sends a message through a topic, then we can say the node is publishing a topic. When a node receives a message through a topic, then we can say that the node is subscribing to a topic. The publishing node and subscribing node are not aware of each other's existence. We can even subscribe a topic that might not have any publisher. In short, the production of information and consumption of it are decoupled. Each topic has a unique name, and any node can access this topic and send data through it as long as  they have the right message type

Ros topic have two types of method
  1. topic publisher
  2. topic subscriber 

ROS has a tool to work with topics called rostopic . It is a command-line tool that gives us information about the topic or publishes data directly on the network.

This tool has the following parameters:

rostopic bw /topic : This displays the bandwidth used by the topic.
rostopic echo /topic : This prints messages to the screen
rostopic hz /topic : This displays the publishing rate of the topic.
rostopic info /topic : This prints information about the active topic, the topics   published, the ones it is subscribed to, and services.

rostopic list : This prints information about active topics.
rostopic pub /topic type args : This publishes data to the topic.It allows us to create and publish data in whatever topic we want,directly from the command line.

rostopic type /topic : This prints the topic type, that is, the type of message it publishes.

check this video for above terminal commands demo

lets learn in each section ( topic publisher , topic subscriber ) in next post with sample codes & videos


Comments

Popular posts from this blog

Getting Started with ARGoS Large-Scale Swarm Robot Simulator in Ubuntu

ARGoS (Autonomous Robots Go Swarming) is a multi-robot simulator designed to support large teams of robots. Its design is pretty different from the design of other simulators. Its most distinctive feature is that the 3D simulated world can be divided in regions, and each region can be assigned to a different physics engine. Furthermore, ARGoS' design revolves around the concept of tunable accuracy. In other words, in ARGoS, everything is a plug-in (robot models, sensors, actuators, physics engines, visualisations, etc) and the user can select which plug-ins to use for an experiment.  Since different plug-ins have different accuracy and computational costs, users can choose which plug-ins to use for each aspect of the simulation and assign resources only where it matters. This makes the simulation as fast as possible. At the time of writing, ARGoS supports the Swarmanoid robots (foot-bot and eye-bot) and the e-puck. ARGoS supports Linux and Mac OSX. Binary packages are availa

A* ALGORITHM BASICS FOR PATH FINDING & HEURISTICS METHODS : ARTIFICIAL INTELLIGENCE

 A* ALGORITHM BASICS FOR PATH FINDING A* , widely used  known form of best-first search & path planning algorithm nowadays in mobile robots,games. this is the function for A*,                                     f(n) = g(n) + h(n) g ( n ) is the cost of the path from the start node to n , and h ( n ) is a heuristic function that estimates the cost of the cheapest path from n to the goal This will find cheapest f(n) value in neighbor nodes to archive goal node. check below image  A to B path finding with g(n),h(n),f(n) value In the final level check below image Now we will check the Algorithm // A* Search Algorithm 1. Initialize the open list 2. Initialize the closed list put the starting node on the open list (you can leave its f at zero) 3. while the open list is not empty a) find the node with the least f on the open list, call it "q" b) pop q off the open list c) generate q's 8 successors

Translate